BOLD responses to different temporal frequency stimuli in the lateral geniculate nucleus and visual cortex: Insights into the neural basis of fMRI

نویسندگان

  • Cecil Chern-Chyi Yen
  • Mitsuhiro Fukuda
  • Seong-Gi Kim
چکیده

The neural basis of the blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) remains largely unknown after decades of research. To investigate this issue, the unique property of the temporal frequency tuning that could separate neural input and output in the primary visual cortex was used as a model. During moving grating stimuli of 1, 2, 10 and 20Hz temporal frequencies, we measured 9.4-T BOLD fMRI responses simultaneously in the primary visual cortex of area 17 (A17) and area 18 (A18), and the lateral geniculate nucleus (LGN) of isoflurane-anesthetized cat. Our results showed that preferred temporal frequencies of the BOLD responses for A17, A18 and LGN were 3.1Hz, 4.5Hz and 6.0Hz, respectively, which were comparable to the previously reported electrophysiological data. Additionally, the difference of BOLD response onset time between LGN and A17 was 0.5s, which is 18 times larger than the difference of neural activity onset time between these areas. We then compared the frequency-dependent BOLD fMRI response of A17 with tissue partial pressure of oxygen (pO(2)) and electrophysiological data of the same animal model reported by Viswanathan and Freeman (Nature Neuroscience, 2007). The BOLD tuning curve resembled the low frequency band (<12Hz) of local field potential (LFP) tuning curve rather than spiking activity, gamma band (25-90Hz) of LFP, and tissue pO(2) tuning curves, suggesting that the BOLD fMRI signal relates closer to low frequency LFP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli

  ABSTRACT  Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF).  Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd.  Results: Average percentage BOLD signa...

متن کامل

Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging

Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...

متن کامل

fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI

The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual...

متن کامل

Achromatic temporal-frequency responses of human lateral geniculate nucleus and primary visual cortex

The sensitivity of the sensory systems to temporal changes of the environment constitutes one of the critical issues in perception. In the present study, we investigated the human early visual system's dependency on the temporal frequency of visual input using fMRI. Blood oxygen level-dependent (BOLD) responses of the lateral geniculate nucleus (LGN) and primary visual cortex (V1) were investig...

متن کامل

Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study.

In this study, we investigate how the responses of the human visual pathway to temporal frequency are modified as information transfers between the lateral geniculate nucleus (LGN) and primary visual cortex (V1) and to the extrastriate areas of the dorsal and ventral streams (V2, V3, VP, V3A, V4, and MT). We use high-field fMRI (4 T) to record simultaneously the responses of these areas across ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 58 1  شماره 

صفحات  -

تاریخ انتشار 2011